





Future Potential Hydrogen usage
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Renaulution | Digital Performance Contribution

REDUCTION OF COSTS

| ROBUST VALIDATION OF SYSTEMS & SW

PROJECT LEAD TIME REDUCTION

RG
TARGETS

-1%/veh cocs

- 50% for physical
validation Costs

(0] physical validation for SW
K/, Quality/ 3
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Domestic Hydrogen Supply chain
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BOSCH GROUP

Technology neutral: Bosch powertrain mix delivers affordable
mobility with minimum emissions

Electric cars are at
home in the city

Electric heavy trucks for

Delivery

t least 20 o/o

deliveries to cities
traffic &

of all new vehicles will be exclusively
battery-electric by 2030

Fuel cells are expected

to feature in as many as 20 °/()

of new electric
vehicles by 2030

+ 6°/o

More economical and more
ecological for frequent long hauls

Commuters

greater range per battery
charge thanks to Bosch
SiC' semiconductors

Efficient over long
and short distances

Extra-

=159
urban ®/

of all new vehicles in 2030 will still run

less consumption with
Bosch 48-volt system

At least 67 /o

Diesel’s CO,
footprint is

on diesel or gasoline, with or without hybrid

15%

better than

Important part of
gasoline's

future mobility mix

By 2030, at least

31%

of all new vehicles will
feature a hybrid powertrain

New diesel engines have practically

stopped emitting nitrogen oxide Renewable synthetic fuels

=100% co,

Renewable synthetic fuels
are a carbon-neutral option
for combustion engines

1 Silicon carbide

Roughly of the vehicles that will be around in
50 °o 2030 have already been sold -

most of

them have a gasoline or diesel engine

@ BOSCH
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Electrolyte

Fuel Cell: Multiphysics

Catalyst Layer _ll l_ Catalyst Layer

Unit segment within cell
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Fuel Cell: Multl Scale

Semi- Predictive Predictive + Data
Empirical Discretized driven
2D/3D (ml\iprose(?,ll\l)N,
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Fuel Cell: Multi Discipline

---9
---9

—
]
—
—]
Material Cell Stack
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What ¢ How ¢

SYSTEM
ﬁ SIMULATION
ROOT CAUSE

INVESTIGATION _{
GT-SUITE

DESIGN

OPTIMIZATION I I

ok Outputs

ANALYSIS

Inputs )
Requirements: Optimal Architectures
« Range, MPGe Req. For Subsystems

« Towing Capacity
« Cost
« Performance

|
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Fuel Cell: 3D-1D synergy

Enables analysis of ---- Hotspots
localized performance: .
3 party CAD ---- Starvation
l ---- Flooding

Pre-Processor
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Hydrogen recirculation system
optimization for PEMFC

SYMBIO - Emilien Sopetti
GTTC 2022




B 1/ Context

Area of study: focus on anode loop

2/ Recirculation loop system modeling

System presentation: model features

! *  Multispecies: H20 and N2 crossover
prediction, impact on recirculation

l performance.

3/ Architecture exploration (@) uree factor = overconsumetion

Purge calibration (1/2): sensitivity study

Recirculation is needed to raise the
anode stoichiometric ratio & ensure

Anode Stoichiometric Ratio N2 Mole Fraction Stack out
P Fact vs. Purge Factor
water management. Ve Purge Factr
- 4
o | 5 008
5 EPE S A 2 7 Durabilit
: A E ""7—'.’ —e % -@-20A g 008 N Efficienc: -@-20A
Ejector (venturi): P IS N om
= g
£ H 5 I _,/ 2
¢ Compact, passive. P g ousbiny 2 o |-Ogy
| | N Efficiency I&t —
« a 0.00 © 0 — ¢
Q S|Z|ng adapted to Stack power 1.00 1.02 LSL?rgeFac:é?G 1.08 110 1.00 1.02 1.gtrQEFactwasa 1.08 1.10

range.

The purge strategy is a trade-off:
—> High purge factor to limit N2 concentration / raise the stoichiometry.

- Low purge to avoid rejecting H2 and to lower the consumption.

Purge
- Necessity to purge N2 and H20.
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H2 Combustion

Laminar Flame Speed &
Knock model

High accuracy at lean conditions

Model Flame Properly for )
unconventional Fuel

- - - - Spark-lgnited Engines

|
|
|
Predictive H2 .
m Combushion - --- Dual Fuel Engines

- --- Pre-Chamber Engines

Laminar Flame Speed [m/s]

=

| LaminarFlame
speed

Dilution [Fraction]
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@ PUNCH | Confidential

! PUNCH | Torino

CALIBRATION OPTIMIZATION OF A DUAL FUEL
(DIESEL + HYDROGEN) ENGINE USING GT-SUITE

@ PUNCH | Confidential

ENGINE MODEL TUNING

MODEL CORRELATION

Below some plots showing the GT-POWER model accuracy before the tuning of predictive combustion
model (TPA analysis):
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All those plots highlight proper modeling assumptions for valve

profiles & timing, hardware geometries, turbocharger maps,

—SIM

—-exr  heat exchanges and pressure losses models.

Rev0 - Valid since 1 Dec 20 7



23

Domestic Hydrogen Supply chain

Electrolyser

Electrolyser
(alkaline)

H2 Storage, dispensing and Fueling

H2 > MBo <H2 <H2

(i

H2

I

H2 Trucks
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H2 <H2
T e Compressor /
—*ﬁm_ Liquefaction

H2 Cavern
storage**
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H2 Fuel
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Electrolyzer and reformers

Electrolyzer

Flow, thermal and
electrochemical domain
combined

Empirical electrochemistry
and Predictive H&O crossover

- - - - —@ Polarization curve fitting
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Reformers

Conversion of Methane to H,

Conversion of Methanol to H,

Conversion of Ammonia to H,
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H2 Storage and Fuelling

3 0

Tank Modeling Hydrogen Filling Hydrogen Hydrogen

Station Compressors Integrated
........ Fueling Systems
T°Q duripg | : "e :
fransient fill-up ;-E; e f '.. . ————'j __= a]
2| 0 e | S~ N ——
Ao | r - 1 B Sag e == h-n—*-%-—
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&) PowerCell Group

Integration of Fuel Cells and Electrolysers
in Powergrid Applications

Customer Case:

2.5 GWp Solar plant in southeast
Europe; calculated total energy output:
1500 hours, 2.5 MW = 3.75 GWh / year

» Total electricity upload: -
2 MW @1500 hrs / year = ~4 hrs/day

* Max. continuous Power Supply:
2 MW for max. 8 hrs / day

- Fuel Cell Capacity?
- Electrolyser Capacity?
-> Storage Capacity?

- Feasibility?

FuelCell_ Powerplant

= N

H2Balance Sum-1

H2_Storage

K= W

1
Controls

Powergrid Integration

torage & transportation
Hydrogen is easy to store or ship Fuel station for
thus not requiring local produc- automotive use
tion or grid connectivity

& g L e
sl - e

Renewabl
energy sources N

Electrolysis
Input: Electricity + water
Output: Hydrogen + oxygen + heat

Summary

- The Powergrid model helps us and our customers
to understand the situation

- Analysis of different potential scenarios
-> Biasing expectations and possibilities 7000

Learnings:
-> Onsite hydrogen storage is challenging

- There is no standard use case - solutions need to
be adapted to customer and market prerequisites

- There is no easy way to evaluate the results

-> Electricity prices and available energy are always
based on historical data — may change in the
future and impact operating strategy and
configuration of the proposed solution

- applications
HTie

Use Cases:

Power Supply
Regulation (up &
down)

Grid Stabilization
Peak Shaving

Off-Grid Applications
(stationary & mobile)

Backup Power

5
o
=
o

PTG -
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Multi Physics » Multi Scale » Multi Disciplines

Electrolyzer

Various levels of fidelity for H2

technology components High fidelity for component

design, cooling and

performance

bl ., |

== .

= @ | ==

=m/ BUNND L.L}.[ T

=/ HENNN iy s

Seamless integration with Simulink for Study cooling strategies and
confrols development integration solutions with H2 layout
A

ale] M—
Holistic predictive

' T ' digital twin solution
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Hanna Sara
Simulation Solutions Consultant
h.sara@gtisoft.com

Website

www . gtisoft.com
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