

Future Potential Hydrogen usage

Empowering
Hydrogen
Technologies
by means of
Digitalization

Reliance on Simulation

Reduced Development Time

Virtual Testing

Intelligent Technologies

High Performance Computing

Early Design Performance discoveries

Managing Uncertainties

Virtualization of Complete Product Design and Validation

RG

TARGETS

- -1%/veh coss
- 50% for physical validation Costs
- O physical validation for SW

 K°/₀₀ Quality / 3
- 1 year (150w vs 210w)

Domestic Hydrogen Supply chain

https://www.fvv-net.de/fileadmin/Transfer/Downloads/Publikationen/FVV__Future_Fuels__StudyIV_The_Transformation_of_Mobility__H1269_2021-10__EN.pdf

BOSCH GROUP

Technology neutral: Bosch powertrain mix delivers affordable mobility with minimum emissions

Fuel Cell Stack and BoP

Unit segment within cell

Fuel Cell: Multi Scale

Fuel Cell: Multi Discipline

Mhat & How &

Requirements:

- Range, MPGe
- Towing Capacity
- Cost
- Performance

Optimal Architectures Req. For Subsystems

Fuel Cell: 3D-1D synergy

Hydrogen recirculation system optimization for PEMFC

SYMBIO - Emilien Sopetti GTTC 2022

1/ Context

Area of study: focus on anode loop

- Recirculation is needed to raise the anode stoichiometric ratio & ensure water management.
- 2) <u>Ejector (venturi)</u>:
 - Compact, passive.
 - Sizing adapted to stack power range.
- 3) Purge
 - → Necessity to purge N2 and H2O.

H2 Combustion

H2 Combustion

Model Flame Properly for unconventional Fuel

CALIBRATION OPTIMIZATION OF A DUAL FUEL (DIESEL + HYDROGEN) ENGINE USING GT-SUITE

© PUNCH | Confidential

ENGINE MODEL TUNING

MODEL CORRELATION

Below some plots showing the GT-POWER model accuracy before the tuning of predictive combustion model (TPA analysis):

All those plots highlight proper modeling assumptions for valve profiles & timing, hardware geometries, turbocharger maps, heat exchanges and pressure losses models.

Domestic Hydrogen Supply chain

https://www.fvv-net.de/fileadmin/Transfer/Downloads/Publikationen/FVV__Future_Fuels__StudyIV_The_Transformation_of_Mobility__H1269_2021-10__EN.pdf

H2 Supply Chain

Electrolyzer and reformers

H2 Storage and Fuelling

Integration of Fuel Cells and Electrolysers in Powergrid Applications

Customer Case:

2.5 GWp Solar plant in southeast Europe; calculated total energy output: 1500 hours, 2.5 MW = 3.75 GWh / year

- Total electricity upload:
 2 MW @1500 hrs / year → ~4 hrs/day
- Max. continuous Power Supply:
 2 MW for max. 8 hrs / day

- → Fuel Cell Capacity?
- → Electrolyser Capacity?
- → Storage Capacity?
- → Feasibility?

Controls Electrolyzer FuelCell Powerplant FuelCell Powerplant Controls Electrolyzer FuelCell Powerplant

Powergrid Integration

Use Cases:

- Power Supply Regulation (up & down)
- Grid Stabilization
- Peak Shaving
- Off-Grid Applications (stationary & mobile)
- Backup Power

Summary

- → The Powergrid model helps us and our customers to understand the situation
- → Analysis of different potential scenarios
- → Biasing expectations and possibilities

Learnings:

- → Onsite hydrogen storage is challenging
- → There is no standard use case solutions need to be adapted to customer and market prerequisites
- → There is no easy way to evaluate the results
- → Electricity prices and available energy are always based on historical data – may change in the future and impact operating strategy and configuration of the proposed solution

Summary

Multi Physics »» Multi Scale »» Multi Disciplines

